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Fronts, domain growth, and dynamical scaling in ad=1 nonpotential system
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By considering the inclusion of nonpotential terms in a model system that has the basic symmetries of a
n=3 clock model, we study the issues of dynamical scaling, front motion, and domain growth in a one-
dimensional nonpotential situation. For such a system without a Lyapunov potential, the evolution follows a
nonrelaxational dynamics with the consequence that fronts between otherwise equivalent homogeneous states
move at a velocity dictated by the strengilof the nonpotential terms and the asymptotic state can no longer
be associated with a final equilibrium state. In fact, for large enafigthe system undergoes a transition
towards a situation of spatiotemporal chaos that is in many aspects equivalent topiersctiortz instability
for Rayleigh-Bamard convection in a rotating cell. We have focused on the transient dynamics below this
instability, where the evolution is still nonrelaxational and the dynamics is dominated by front motion. We
classify the families of fronts and calculate their shape and velocity. We deduce that the growth law for the
domain size is nearly logarithmic with time for short times and becomes linear after a crossover, whose width
is determined by the value @ This prediction is validated by numerical simulations that also indicate that a
scaling description in terms of the characteristic domain size is still valid as in the potential case.
[S1063-651%98)04809-0
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[. INTRODUCTION opposite situation to that of dissipative relaxational dynamics
in a potential. A general nonequilibrium situation will, in
A noteworthy result in the study of nonequilibrium statis- general, have contributions from both types of dynamics
tical mechanics is the existence of dynamical scaling during4,5].
the coarsening process in which a system approaches equi- The motion of an interface between two linearly stable
librium after undergoing a phase transitigh2]. Dynamical  solutions of a dynamical system was long ago proposed as a
scaling reflects that domain growth is self-similar with ameasure of relative stability for a nonpotential systgh
single time dependent characteristic length. In the simplesind the motion of interfaces, domain walls, or front solutions
case of a relaxational dynamics for a scalar order parametenas been studied in a number of nonpotential systewms
which models, for example, an order-disorder transition12]. It is known that a domain wall between two equivalent
(modelA in the taxonomy of3]), domains of two equivalent states with different broken symmetry can movedia 1 in
phases grow locally from an unstable state, and the approadither direction due to nonpotential dynamj€s. Likewise,
to a final equilibrium state is dominated by interface motion.nonpotential dynamics can stabilize front solutions that, in
For spatial dimensiomd>1, the mechanism for domain the potential limit, would move from a globally stable into a
growth is curvature driven interface motion. This leads to ametastable statiel1]. It is the purpose of this paper to study
characteristic length growing &~tY2. This type of phe- the consequences of interface motion driven by nonpotential
nomenon has been studied in a large variety of systems thdiynamics on coarsening processes and dynamical scaling,
share the common feature that the final state of the dynamiaghich by and large have not been considered.
is a state of thermodynamic equilibrium, which minimizes a To this end, and as a first step towards understanding the
free energy or “potential” of the problem. Transient dynam- problem of domain growth and dynamical scaling in nonre-
ics might also include additional processes beyond pure rdaxational systems, we consider the addition of specific non-
laxation in that potentidl4,5], but a measure of relative sta- potential terms to the one dimensional three-component vec-
bility between stationary states is guaranteed by theor model of statistical mechani€$3] (a field model that has
existence of the potential. A more genuine nonequilibriumthe basic symmetries of thg=3 Potts or then=3 clock
dynamics occurs when such a potential does not exist. Anodelg describing three competing, nonconserved order pa-
natural question, which we address in this paper, is the exigzameters with short-range self-interactions. It turns out that
tence of dynamical scaling in the approach to a final stationthe new nonpotential terms imply that the zero-dimensional
ary state that does not follow the minimization of a potential,version of the resulting model is analogous to the Busse-
while this transient dynamics from an unstable state involvesieikes model for Rayleigh-Berd convection in a rotating
the formation of spatial domains. A numerical study of do-cell and also mathematically equivalent to the May-Leonard
main coarsening in a nonpotential dynamics was reported ibiological model of competition between three species. Al-
Ref.[6]. The question of dynamical scaling can also be adthough the model studied here is not a realistic model for
dressed for Hamiltonian dynami€g], which is the extreme Rayleigh-B@ard convection in a rotating cell4], one can
still use the analogy to get an intuitive physical interpretation
of the dynamical evolution of the system. It is known that,
*URL: http://www.imedea.uib.es/PhysDept for the fluid system, and beyond a threshold value for the
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parameter,§, measuring the strength of the nonpotential

terms(related to the rotation speed of the ¢elh instability f[Al,Az,Ag]:f dx{
to a time dependent dynamics occui€ippers-Lortz insta-

bility [15,16]). Below this instability, but still taking the sys- q
tem beyond the Rayleigh-Bard convective instability, lo- — 77_\1,} (2.2
cally ordered domains, associated with different orientations 4

of the convective rolls, emerge. The subsequent coarsening

process seems to be stopped by thgpers-Lortz instability Where®=3> A7 and¥ =32 ,Af". The nonpotential terms
in d=2 [17,18. However, below the instability to a time are chosen as

dependent state, three preferred orientations exist and the

3
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motion of interfaces separating them is subject to nonpoten- f1=A1(A3-A)),
tial dynamics that will affect domain growth.
Another reason for using this system is that dynamical fo=Ay(A5—AD), 2.3
scaling ind=1 potential systems is a special case for which
well established results are availap®19: for the simplest fa=As(A2—A2).

case of a scalar nonconserved order parameter with short

range interactions, a scaling solution is known with a logadn the cases=0 the dynamical flow is of aelaxational

rithmic growth law for the typical domain siz&R~ Int  gradienttype [4,5], that is, there exists a Lyapunov func-

[20,21]. This regime follows an early time regime of domain tional (F) that monotonically decreases in time. Whén

formation with a growth lawR~tY? [22]. The logarithmic  #0, however, one cannot find generally such a functional

domain growth has its origin in the interactions between doand we say that the systemrisnpotential

main walls[23]. The velocity of domain wall motion in these ~ The resulting equations of motion are

circumstances can be calculated by a perturbation analysis ) ) 5 )

[10]. We study how these results are modified by nonpoten- ~ %A1=0dxA1+A[1=AT—(7+ 6)A;— (7= 5)As],

tial dynamics. We find that dynamical scaling still holds, but

with a crossover between two well defined regimes charac- Ay = d2A,+ A 1—AS—(n+ 8)AS—(n— 5)AZ],

terized by a logarithmic and linear domain growth law, re- (2.4

spectively. The two growth laws can be traced back to the — 3,A;=02A;+A[1—A2—(5+ 8)A2—(n— 8§)AZ],

two mechanisms that determine domain wall motion. The

first one is the interaction between domain walls as in theand they form the basis of our subsequent analysis. Notice

potential case. The second one is due to the fact that th@at the system is invariant under the following transforma-

nonpotential dynamics causes isolated individual fronts tQjons:

move with finite velocity. In a multifront configuration this (8 x—x+Xxq, t—t+1t, (spatio-temporal translation sym-

provides an additional coarsening mechanism in which frontgnetry),

moving in opposite directions annihilate each other. The (p) A;—A,, A,—A;, A;—A; (cyclic permutation sym-

crossover time between the two dominant mechanisms denetry),

scribed depends on the strength of nonpotential terms. When (c) A=A, 5——35, whereA;, A are any two differ-

these become large enough, the logarithmic regime is pusheght amplitudes.

to just the very early times. In this case finite size effects The previous analysis shows that, A,, and A; are

become also important since very large domains emergeequivalent” variables(from the dynamical point of viey

rather fast. A similar set of equations is introduced in R§24] for
The outline of the paper is as follows: in Sec. Il we intro- some particular values of the parameters & in the context

duce the nonpotential model and describe its homogeneous population dynamics. In their cagé represents the popu-

stationary ~solutions. In Sec. Il we classify non-|ation of a biological species.

homogeneous front solutions and compute their velocity. We | gne neglects the spatial dependence of the fidldee

also analyze the interactions between two fronts includingecover a model first proposed in the context of fluid dynam-

the nonpotential effects. In Sec. IV we discuss the issue o5 py Busse and HeikeEl6], which is mathematically

dynamical scaling and the growth law. We present numericabqyivalent to a model of three competing biological species

simulations that show the validity of the dynamical scaling[25) |n the Busse-Heikes modeh,, A,, and A are the

description when nonpotential terms are present. Finally, "’amplitudes of the three selected modes corresponding to

Sec. V we end with some conclusions and an outlook. e different orientations of the convection rolls in the ro-
tating cell. For this fluid cased is related to the rotation
Il. THEORETICAL MODEL speed such that=0 is the nonrotating case; the paramejer

|is related to other fluid properties. The analysiq 18] and
[25] shows that, for a certain range of the parametgend
. é (see next sectionthere are no homogeneous stable solu-
IAI=— SA ofi, 1=123. (20 tions and the dynamics tends asymptotically to a sequence of
' alternations of the three modes. An unwanted feature of the
HereA;, A,, andAj are real scalar fields. For the potential previous model is that the alternation time is not constant,
function F we choose that of the well-known=3 vector but increases with time, contrary to experiments where an
model[13]: approximately constant period is observed. Busse and Heikes

We base our theoretical approach on the following mode
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n the nonpotential terms as a perturbation. The two nonvanish-
ing stationary amplituded; andA; are, for §=0, solutions
5=—n+1 d=n-1 of

A=~ A+ A A,

(3.0
TN = —Aj+ A + pAA?,

KL
------ with boundary conditionsAj(—«)=A;(+>)=0 and A,
\ (+2)=A(~=)=1.
*§ The system3.1) may be considered to represent the two
\\“ dimensional motion of a Newtonian particle of unit mass
______ N \ (x—t, Ai—X, Aj—Y) under the action of a force with

potential  function  V(X,Y)=21(X?+Y?) —3(X*+ Y%
—37X2Y2, This function has two maxima img={A,
=1A;=0} andm;={A;=1A;=1}. Itis clear that there ex-
FIG. 1. Linear stability diagram of the homogeneous solutions's‘tS a unique trajectoryallowed by the dynamigsalong

of Eq. (2.4). Inside the region labeled, rolls are stable whereas in WhiCh a particle located img(m,) cf’;\n_rea_chnl(mo). The

the H region, the stable solution is the hexagon. The KL regionKiNk profile corresponds to the variation in time of the par-

corresponds to the Kpers-Lortz instability. ticle coordinategX(t),Y(t)) when it moves between the two
maxima[30].

. ) . An explicit analytical solution can be found in two par-
proposed that the addition of small noise could stabilize the;. or cased31]. First, when 6< 7— 1<1, we have

period[5,26], but an alternative explanation considered the
addition of space-dependent terms to the equations. Al- Aio(x): r(x)[1+exp2yn— 1(x—x0))]*1’2,

though the symmetries that must satisfy the amplitude equa- (3.2
tions would imply that the spatially dependent terms should AP(x)=r(x) e{1+exp2n—1(x—X0))] 2

be of a specific fornfi27-29, it has been shown iflL7] that

these can be further simplified without altering the essentialwith r(x)=1+(7—1)R(x), R(x)=0(1). Secondly, when
of the problem. Our one dimensional model with equivalenty=3 it is possible to obtain exact analytical solutions:
space-dependent terms for the three variables does not satisfy

the proper symmetries holding in the fluid case. However, it AO(x) = 1 B E 1+t X—Xo

is still true that we can use the fluid analogy to gain some (%)= 1+e720—x9 2| T an V2

insight into the dynamical behavior of the model. For this 3.3

reason we will refer often to thé,’s as the “amplitude” 1 1 X=X '

. 0 _ 0

fields. Aj (X) = ﬁ = E 1+tan}‘( ) .
There exist two kinds of homogeneous solutions that are 1+e™ 0 V2

stable in some region of the parameter space spanneg by . . . . .
and 6. These are three “roll” solution;=1, A;=0 (j In both cases, is arbitrary but fixed. From these solutions it

£i), i=1,2,3, and one “hexagon” solutiod,=A,=A, is clear that the spatial scale over th&ﬁ andAj vary is of

—1/J1+ 27 (this solution requires;>—1/2). A linear sta- order 1/»—1. _ _ _

bility diagram of these solutions is shown in Fig. 1. We have The three roll solutions are equivalent and they yield the
focused on the region labeled with the letRefor values of ~ Same value for the Lyapunov functiori@.2). Therefore, we

8 below the Kippers-Lortz instability [(5|<%—1) and expect isolated kinks not to move in Fhe potential proble_m
where the rolls are the stable solutions. In this region wed=0). We now ask about the persistence of these kink

expect the formation of domain walls connecting homoge-Solutions whery is different from zero. For this we will use
neous stable roll solutions. singular perturbation theory. Let us assu®eo be small,

say of ordere, and look for a solution of Eq(2.4) [with
A (x)=0] of the form

Ill. FRONT SOLUTIONS A(x)=A%x—s(t))+& Al(x—s(t))+O(&?),

A. Isolated fronts 0 1 ) (3.9
In the context of the present study, fronts or domain walls AIO=A; (x=s(t)+e Aj (x=s(6)+0(=%),

are defects that connect two stable homogeneous solutio . .
g "WhereAY(x) andAl(x) are solutions of Eq(3.1). Substitut-

F][tonts mf onte dlrr:]ens!ontﬁ're usuallwer?md(sandt\r/]ve will ing into Eqg.(2.4) and matching the terms of the same order
often refer to them in this way. We focus on the space, ¢, we find, at ordei0(s9),

dependent stationary solutions of E.4) with §=0. The

stable kink solutions are such that one of the three ampli- f9>2<AiO+AiO—(A?)3— nA?(AJQ)2=O, (3.5
tudes, sayA,, satisfying the boundary conditions, (x—
+0) =0, is zero everywhere. In order to study the dynamics a)Z(A]QJrA?—(A?)?'— nAJQ(AiO)Z:O,

of the nonpotential kinks, we first consider the kinks associ-
ated with the stationary potential problem and then we treaand at ordeiO(e?)
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(3.6
where
L
(&iﬂ— 7L(AD)2+(AD)?]
- —27APA?

o

The solvability condition for the existence of a solution
[Al(x), Al(x)] reads

(@', a')=0,

—29A0A] )
Izt 1= pl(AD)*+(AD)?])"
Al
A}

se " HAD)?A) - Alas

a:
— 8 IAY(A))2 - ADds

3.7

where (,-) is a scalar product in.?(R) defined by €,9)
=[*_dxf(x)*g(x) and®' belongs to the null space of the
autoadjoint operatof.. Because of the translational invari-
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FIG. 2. Kinds of fronts and their direction of motion fér>0.
The remaining amplitude for each kink is understood to be zero
across the interface. F@<0 the picture is the same but with the
arrows interchanged.

n=3, or, more generally, the kink profiIAi0 obtained nu-

ance,L has a zero eigenvalue so that its kernel is not emptymerically. For a value of;=3.5, we see that the perturbative

The associated eigenvector is
A A?
A

o= (3.9

|

result to first order ind, Eq. (3.9), turns out to be in good
agreement with the numerical results approximately for val-
ues of6<1.5. Of course this upper limit of validity depends
on 7 in such way that it gets bigger agis larger. Above this
limit the linear relation between and § is no longer valid

This is immediately seen taking, for example, the derivativeand one needs to compute further corrections in terms of

of Eqg. (3.5 with respect tox. Equation(3.7) can now be
explicitly evaluated. From this equation, the solit&igk ve-
locity in the nonpotential case is obtained at leading order:

f dx AANAYGA) - ADG,AD)

V() =0d5=6—— +0(62).
|” atapz+ o)
(3.9

Therefore, in the nonpotential case, the kink moves de

spite connecting states associated with the same value of tlm
Lyapunov potential of the equilibrium problem, as already,[h

known for other problem§9]. For the particular case af
=3 for which an analytical result is available for the kink
profile [Eq. (3.3)], an explicit result is obtained for the soli-
tary kink velocity, namelyp (8) = 5./2/4.

The expressioii3.9) gives not only the magnitude of the
velocity but also the direction of motion, which is related to
the sign ofv. First, we note that the velocity is at leading
order proportional tos, so the direction of the motion de-
pends upon the sign af. To illustrate how Eq(3.9) deter-
mines the direction, let us consider, for example, a kink with
boundary conditionsA;(—=)=A;(+«)=0 and A;(+ =)
=AJ-)(—oc)=1; AP(x) andAP(x) are such that,A?>0 and
dyA;<0. In this case the numerator of E@.9) is positive
andv has the sign ofs. A positive (negative value ofv
corresponds to a kink moving to the rigteft). In Fig. 2 we

show a classification of the six possible types of isolated

kinks and their direction of motion. Three of them move in
one direction and the other three in the opposite direction.
We have checked numerically the domain of validity of
the perturbative resul3.9) (see Fig. 3. To check Eq(3.9)
we either use the analytical result of the kink proﬂl& for

successive powers df.

B. Multifront configurations

To study transient dynamics and domain growth we con-
sider random initial conditions of small amplitude around the
unstable solutiorA;=A,=A3;=0. In this situation a multi-
front pattern emerges rather than a solitary kink. In order to
study dynamical scaling, we are interested in the late stage of
this dynamics, once well-defined domains have been formed.

In a potential system governed by a nonconserved scalar
der parameter with short-range interactions, as is the case
th §=0, late time dynamics can be explained in terms of
e interaction(and further annihilation among adjacent
kinks [24,20,21,23 An isolated kink is stable. The interact-
ing force between kinks turns out to be proportional to
exp(—ad) [23], wherea is somepositiveconstant related to

the interface width and other system parameters,cbisthe

or

1.4
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04

0.2
0.0
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Kink velocity

1.0 15 20 25 30
)

FIG. 3. Solitary kink velocity as a function of the nonpotential
parameterd for »=23.5. The straight line corresponds to the theo-
retical perturbative approact8.9) whereas the points come from
numerical simulation. Here and in the remaining figures, magni-
tudes are in the dimensionless units of E2}4).
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distance between two adjacent kinks. This interaction amonwherev (5) is the solitary kink velocity. This expression is
kinks leads to a growth law for the characteristic length thabbtained in the “dilute-defect gas approximation,” that is,
depends on time logarithmical[{20,21]. The force is attrac- when the width of the fronts is much smaller than the dis-
tive and leads to kink annihilation. The process occurs irfance between them. The first term in the right-hand of Eq.
such a way that the domain that vanishes first is the smalle$8.10 can be either negative or positive and represents the
one. Kink annihilation occurs in a very small time scale. Incontribution to the variation of the domain size owing to
fact, the hypothesis of “instantaneous annihilation” hasnonpotential effects. The s_econd term is related to th_e inter-
been found to be a good assumpt[@d]. Kink annihilation ~ acting force between the kinks and it is always negatate

induces domain coarsening, leading to a final state with &active forcg so that it tends to shrink the domain. If both
homogeneous roll solution filling up the whole system. terms are negative, the kinks will annihilate each other. Oth-

When 6 is different from zero the long stage dynamics erwise, when the first term is positive, the two effects act in
should still be explained in terms of moving fronts that an-OPPOsite directions. In fact, given an initial size of the do-
nihilate each other. But now two very distinct competingM&N So, it is possible to find a valué= 5. for which the
physical phenomena come into play. On the one hand, the,(éoma!n neither shrinks nor grows; in this case, the |n.|t|al
is the aforementioned kink interaction. On the other hand, w&0main would not evolve in time, being a stationary solution.
have the kink motion driven by nonpotential effects. In thisFOr valuesé> 4. the domain would get wider whereas for
case, we do not expect the growth law to be logarithmic, a®< dc it would shrink. Note that in th&=0 case(potential
least in the regime where the nonpotential effettise regime, the isolated domain always collapses, but this can
strength of which is measured &) are important. In Fig. 4 be stopped with a suitable strength of the nonpotential terms.
we show some snapshots corresponding to a typical run drurthermore, given a fixed value 6t if s, is large enough,
the temporal evolution of the systefwe use periodic bound- the dominant term responsible for the kink motion is the one
ary conditiong. The first snapshot corresponds to an early2Ssociated withy (). In this case the fronts move at a con-
stage during which domains are forming. Once formedStant velocity leading to a variation of the domain size linear
kinks move in such a way that annihilations of contrapropaWith time. On the other hand, &, is small enough, kink -
gating adjacent kinks leads to coarsening. Eventually, as coftteraction will be the dominant effect and the single domain
responding to the last snapshot, the system may be in a statt#€ ywll collapge Iogarltr_lm|cally W|t_h time. This _p|cture.of
with a group of kinks moving all in the same direction. the size dynamics of a single do.maln also expl_alr}s bas_lcally
These will interact among therfwith an interaction force What happens when more domaiasd a nonvanishing third
that varies logarithmically with the interkink distancentil ~ @mplitude coexist. It gives a useful understanding of the
extinction. characteristic growth laws obtained from a statistical analysis

We have performed a perturbation analysis of domair" the next section.
growth in the simplest example of a single domain bounded

by two moving domain walls. A differential equation for the V. DOMAIN GROWTH AND SCALING
domain sizes(t) can be obtained in the general casee ] . . ]
Appendi¥. For =3 it adopts the simple form In this section we focus on the scaling properties of the

~ system(2.4) in a late stage of the dynamics, namely, when
ats(t)=2v(5)—24\/§e* v2s(t), (3.10 well-defined domains have formed. The scaling hypothesis
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states that there exists a single characteristic length scale 8.0 ' ' .
R(t) such that the domain structure is, in a statistical sense,
independent of time when lengths are scaledR{y). We 757 i
will refer to the time dependence of the scale length as the
growth lawof the system. It has been found that the scaling < 701 i
hypothesis holds in a great variety of potential systems. The & £
system under study here gives us the opportunity of answer- 6.5¢ 1
ing the question of whether a nonpotential dynamics satisfies 60" |
dynamical scaling. )

Two magnitudes frequently used to study domain growth 55 . \ . \ \
and scaling properties for a scalar fialt{x,t) [for instance, 3 4 5 6 7 8 9
one of the three amplitudes in E(.4)] are the equal time Int

correlation function ) . - L
FIG. 5. Time evolution of the characteristic domain size for the

potential case¥=0 andL=1000. The straight line is a linear re-
C(r,t)= < EX ‘I’(X+f,t)‘F(X,t)> : (4.1)  gression fit of points obtained numerically.
I.C.
) _ ) a very long transient before the system reaches its final state,
and its Fourier transform, the equal time structure factor  \hich corresponds to a one roll solution filling up the whole
system.
S(k,t)= < > \IAr(k,t)\IAr(_ k,t)> , (4.2) In the nonpotential case, the averaged domainR{ze is
k e shown in Fig. 6 for a system of size 500 afe 10 3. For
the earliest times, when the kinks are very close to each
where the angular brackets indicate an average over initiaither, and according to the discussion in Sec. Ill B, we ex-
conditions(“runs™). If a single characteristic length exists, pect the interaction terms to be the dominant ojasdong as
according to the scaling hypothesis, the pair correlation funcé is small enough This leads to a logarithmic growth of

tion and the structure factor must have the following scalingR(t) as observed in region | of Fig. 6. Due to coarsening the

forms in ad-dimensional system: characteristic domain size becomes larger and the domain
wall interaction becomes weaker as the time increases. For

C(r,t)=f(r/R(1)), (4.3 longer times the nonpotential effects dominate with respect

to wall interaction. In this regime we can consider each do-

S(k,t)=R(t)F (KR(1)). (4.4  main wall to move at a constant velocity. We obtain for this

stage a growth consistent with a linear profile with titne-
The functionf is called thescaling function To check nu- gion Ill). Between regions | and Il there exists a crossover
merically the validity of the previous scaling laws, we have (region Il) for which the weights of both effecignteraction
integrated the system of equatiof@s4) using a finite differ- and nonpotentialin driving the domain wall motion are of
ence method for both the spatial and temporal derivatives. Ithe same order. Finally, at very late times finite size effects
the simulations we have taken a constant value for come into play(region 1V): the domain size saturates to a
namely,»=3.5, and we have varied from §=0 (potential  constant value and the number of domain walls is too small
case to 6=0.1 (a value below the Kppers-Lortz instability to generate good statistics. Whéiis large enough the initial
threshold. We have used periodic boundary conditions andkink annihilation is so fast that the regions | and Il in the
have averaged our results over 100-500 runs. To study ddr(t) plot can hardly be observed in the numerical integra-
main structure, we consider the correlation function of one otion. In this case of large nonpotential effects, a linear growth
the three amplitudes. We use the correlation function betteiaw is observed from the shortest times as shown in Fig. 7
than the structure factor because of the large fluctuations dbr a very large system of size=100 000. For smaller sys-
the structure factor at small wave numbers. A typical lengthitems finite size effects occur at relatively early times. For
scale associated with the average domain size can be definegample, saturation effects appear far200 for a system of
in several ways. Specifically, we have determined it by com-
puting the value of for which C(r,t) is half its value at the 12
origin at timet, that isC(R(t),t)=2C(0t). The calculation 1
has been performed by fitting the four pointsGffr,t) clos- !
est toC(0,t) to a cubic polynomial. Another typical length, £
R,(t) can be evaluated directly as the system size divided by
the number of kinks. We have verified that the quotient
R;(t)/R(t) remains nearly constant, as expected, when a 6.00

single characteristic length dominates the problem. 0 5 1010 x10° 45 Mo 80

7.40

b)

<

6.931

R®

6.47F

[ R S -

FIG. 6. (a) Time evolution of the characteristic domain size for
6=0.001 andL =1000. The initial logarithmic growth laregion

We consider first the potential cage=0: in Fig. 5 we  |) becomes lineafregion Ill) after a crossovefregion Il). Region
show that the domain size follows the expected logarithmiav is related to finite size effectgb) Closeup of region | in the left
behavior. The attractive interaction among the kinks leads tplot with logarithmic time scale.

A. Growth law
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20 ' ~t12 for d>1 [1,2]. An explanation for the failure of the
1 mean field argument when applied to the discrete model is
18+ 7 that the initial fluctuatiom N in the number of kinks moving
1 in each direction is important. It seems that such fluctuations
__ 16+ . are not significant enough in the continuous model in which
B:’ i ] domain walls emerge from a slight perturbation of the un-
14+ s 4 stable stateA;=A,=A3=0. To check this idea we have
£0.10 ] computed the growth lavir(t) for the continuous system
125 ggg R with modified initial conditions. We have generated initial
I 1000 500 0 500 tooal conditions with a wider distribution of the random variable
10 , , Nem M AN as follows: for each poink; of the discretized mesh, a
20 40 60 80 100 120 140 random numben; from the sef{1,2,3} is chosen. Then the
P amplitude values atx; are Ak(xj)zéknj, k=1,2,3 (&

stands for the Kronecker functipriThis generation of initial
FIG. 7. Time evolution of the characteristic domain size for two gomain walls mimics the situation of a discrete model. The
distributions of the initial conditions with different width of the histogram of AN for the situations considered is shown in
random variablAN=Ng—N, , which measures the difference be- iy 7 For the artificially generated initial distribution of
tween right and left moving interfaces. The inner plot shows thekinks we obtain a growth rate that is no longer linear as
corresponding histograms in terms of the relative frequencyof shown in Fig. 7

The initial conditions were generated as explained in Sec. IV A. We finally note that at long times the system will consist
The growth exponents obtained numerically are close to 1.0 and 0.7 y y . -

\ : . of a homogeneous roll state or a group of kinks moving
for the solid and dashed lines, respectively. Parameter values areIth  to the right or to the lefid5]. Note that th fiodi
7=3.5 and5=0.1; the system size is=100 000. either 1o the right or o the 1e - Note that the periodic

boundary conditions impose constraints on the number of

such moving kinks. To be precise, the number of kinks mov-

pear ing in a fixed direction must be a multiple of three. We can
' form a subgroup of three kinks moving in the same direction

In. the regime for Wh'c.:h the .|nteract|on effgcts are tr!ebyjoining those appearing in each row of Fig. 2. The moving
dominant ones, we can give a simple explanation of the lin;

ear arowth law observed based on mean field theory ar kinks will continue interacting among them until eventually
9 y guthey will all disappear. In this situation we expect the growth

ments. Statistically speaking, there will be the same numbelraW to be logarithmic with time but one of such groups is

of kln_ks moving to Fhe right and to the left. As a matter of composed typically of three, six, or rarely nine kinks, a num-
fact, in an appropriate reference frame, the system can bg

seen as composed of motionless kirnkgpe 1) and kinks er too small to generate good statistics.
moving at a velocity of 2 in one fixed directioritype 2 . If

sizeL=500. The bigge®s, the sooner finite size effects ap-

we callN,(t) andN,(t) theaveragenumber of kinks of both B. Scaling function
types at timet, the number of kinks of, say type 1, at time ) .
t+dt will be We now address the question of the validity of the dy-
namical scaling hypothesig.3). For this purpose, we have
N,(t) plotted the equal time correlation functi@{r,t) versus the
Ny (t+dt) =Ny(t) =Ny(t) 20 dt——, (4.9 scaled lengttr/R(t) for several times. Figure 8 shows the

scaling function in the potential case. In Figs. 9 and 10 we
where the second term in the right-hand side represents t°% the correlation functions for several times before and
number of kinks disappeared it by annihilation andL after sc_almg thg system Iengt_h. Our re_sults show that the
stands for the system size. The important point is tha{;orrelanon _functlons follow_a_smgle p_rofll_e when t_he length
Ny (t)=N,(t)=N(t) (remember we are dealing with aver- Is scaled with the characteristic dor_naln sizes o_btamed above.
’ o We therefore conclude that a scaling description of the sys-
aged quantltlzes so that Eq.(4.5 transforms intoN(t)= (e js also valid as in the potential case, but now with a
—(20/L)N(t)". The mteg{anon of the previous equation onpotential dynamics. The upper limit of the time interval
gives N(t) =[(2v/L)t+N, "] "'~t"*, so that the average guring which there is scaling is determined by the appear-
inter-kink distanceR(t) ~N(t) *~t is linear with time. . ance of finite size effects. The range of valueséér which
We note that this mean field argument and the lineatnere is scaling in a quite large time interval is rather small.
growth law does not hold for a discrete model with domaingor values ofs of even a few tenths, the finite size effects
walls performing independent random walks; in this case &how up for very short times. Moreover the fluctuations in
power law R(t)~t"? can be rigorously demonstrated the scaling function grow a8 increases. For these reasons,
[24,32. This fact is not surprising because it is known thatye have not been able to obtain a conclusive comparison
growth laws for discrete and stochastic models may diffelfyetween scaling functions for different values®falthough

from those of the corresponding continuous and determinisqejr shapes appear to be rather insensitive to the valde of
tic versions[33]. One representative example is the lIsing

model with Glauber d.yn_amics versus té model. In tlr/12e V. CONCLUSIONS
former, the characteristic domain size growsR{g)~t
[34] independently of the dimensionalityhereas in the lat- We have studied domain growth and dynamical scaling in

ter the growth law isR(t)~Int for d=1 [20,21] and R(t) a nonpotential coarsening process in one dimension. The
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0.20 8
0.15 a
=
s 0.10 1
Q
0 5 10 15 2 25 00 05 10 15 20 25 30
0.05 1 r riR@)
FIG. 10. (a) Equal time correlation function vs the nonscaled
0.00 . . . . ) length for §=0.1, L=1000, and several different times fromn
00 05 10 15 20 25 30 =15 to t=150. (b) Equal time correlation function vs the scaled

r/R@®) length. The system parameters and the times for each curve are the
same as ina).
FIG. 8. Scaling function for the potential cage=0. The plot

has been made by over plottir@(r,t;) vs r/R(t;) for several growth law consistent with a linear profile with time. For
times fromt=200 up tot=5000. larger values ofé the logarithmic region is not observed

] . ~ because of the fast annihilation of the domains during the
model considered features Fhree couplt_ad ampllt_udes. Itis r&zery early times. The two dimensional version of this prob-
lated to models of competing population species and t0 m is currently under stud36] and it exhibits rather dif-
three-mode description of the phenomenon of Rayleighferent dynamical behavior grossly dominated by vertices

Benard convection in a rotating cell, although it cannot beyhere three domain walls meet and which have no parallel in
used as a realistic model for this physical process. We havgne dimensional systems.

focused on the region below the Bpers-Lortz instability
point, where the dynamics is still nonpotential and the sys-
tem shows coarsening. A solitary kink moves at a constant
velocity due to the nonpotential dynamics. When there are Financial support from DGYCIT(Spain Projects Nos.
several kinks present in the system, these move due to bothB94-1167 and PB94-1172 is acknowledged.

domain wall interaction and nonpotential effects. In any case

the dynamics is governed by the motion of interfaces. This APPENDIX

motion is such that kinks moving in opposite directions an-

nihilate each other. As a consequence of kink annihilation We consider an isolated domain bounded by two domain
the average domain size grows in time and the system coarsralls associated with amplitudes, and A,, while A;=0.
ens. Whens=0 (potential casewe have shown that, in When the domain size is much greater than the interface
accordance with general results, the growth law is logarithwidth (“dilute-defect gas approximation), a reasonablan-

mic with time and that a scaling description of the systemsatzfor this solution is

dynamics is possible. Whe#i becomes different from zero

we have found that the scaling hypothesis still holds, as in ~ Ai(X,t)=a[x—r(t) ]+ b(x—d+r(t))+wy(x,t),

the potential case, but with a different growth law that re- (A1)
flects the nonpotential dynamics of the system. For the short-  Ax(X,t)=b[x—r(t)]+a(x—d+r(t))—1+w,(x,t),

est times, the kink interactiofthe only effect present in the

potential casgis the dominant effect and gives rise to a wherer(t) measures the displacement of the kinkss the
logarithmic growth law with time. For longer times the av- initial domain size[so that the domain size at tinteis d
erage interkink distance is large enough to make the interac=2r(t)], d;r andw; (i=1,2) are assumed to be small cor-
tion effects negligible in driving kink motion. Therefore each rections of ordeld and d,w; to be negligible with respect to
kink moves(at a constant velocijynearly independently of w;. To simplify notation, we usd=f[x—r(t)], fy=f[x

the others as if it were isolated. This situation leads to a-d-+r(t)]. The moving frontsaa andb satisfy the boundary
conditionsa(e)=b(—=)=0, a(—«)=b(»)=1, and they
are solutions of the syste(@.4) (with one of the amplitudes
equal to zerpso that the following equations hold:

ACKNOWLEDGMENTS

M+(a1b):M+(bd1ad):Mf(b!a):M7(ad ,bd):O,
(A2)

where the action of the operatafg..(-,-) is given by

0 é 16 15 26 2‘5 30 0.0 015 110 115 2.‘0 2;5 3.0
g rIR® M. (f,9)=2+v(8)dg+T—f3—(nx8)fg2. (A3
FIG. 9. (a) Equal time correlation function vs the nonscaled ) ) )
length for =0.001, L=1000, and several different times from  The parametep () is the front velocity as given by Eq.
=150 to t=15000. (b) Equal time correlation function vs the (3.9).

scaled length. The system parameters and the times for each curve Introducing the ansatzAl) into Eq. (2.4) we obtain, at
are the same as i@). leading order, a linear system of equationsyigrandw,:
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L=,
92+1—3(a+bg)?>— n(b+ag—1)?

—2n(at+bg)(agtb—1)

W, ,
¢:(W2)' ¢=

where the functionsK;(x,t) and K;(x,t) (i=1,2,3) are

given by
Ki=a(ag—1)%+2b(a+by)(ag—1) + by(1—2a4+b?),
K,=a(ag—1)?+2(ag—1)(ab+agby+ bby) + by(1+b?),
Kg=—202bg+bgy(3a+ 3aby+2b3-2),
Ki=—a(a+2bg)(ag—1)+by(bg—2ab—bhy),
Ki=a(a+2bg)(ag—1)+bgy(2ab+bby+2a4by—by),

Ki=—2d2a4+3b%(ag—1)+3b(ag—1)?+2a3—3a5+ay.

The solvability condition for the existence of a solution

(w1 (x,1),w»(x,t)) for Eq. (A4) reads

(¥, ¢')=0, (A5)

where W' belongs to the kernel of the auto-adjoint linear

differential operator. We will show below that¥' is ap-

proximately given by §,a, d,b)" (hereT denotes the trans-

posed vector wherea=a[x—r(t)] andb=b[x—r(t)] are
the domain wall profiles around=r(t).
The first component of the vectdW' is given by

(LW =L 0@+ Li0b=d3a+ da—3(a+bg)?d,a

—p(agtb—1)%0a—2n(a+bgy)(ag+b—1)a,b.
(A6)
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(A4)
—2n(a+bg)(ag+b—1)
d5+1—3(ag+b—1)2— p(a+by)?)’
(dya+ dybg)v(8)+ (dyby— da) dr + K1 5+ Konp+Kg
(dxb+ dyag)v(8)+ (dyag— dyb)or + K1 8+Konp+Kj)'
[
(ag+b—1)%29,a~b?%s,a, (A7)
(a+byp)(ag+b—1)d,b~aba,b,
we find
(LW, =4, s2a+a—a’— pb?al. (A8)

Taking the derivative of Eq(2.4) with respect tax we find
that the right-hand side dfA.8) is equal to zero when the
amplitude solutiona=a[x—r(t)] and b=Db[x—r(t)] are
replaced by its form for6=0. Hence, we conclude that
(L¥"),=0(5). Likewise, we can prove thatfWT),
=0(6). Therefore, at lowest order i, (dya, dyb)" be-
longs to the kernel of the operatar.

Now we can calculate the evolution of the domain size
s(t)=d—2r(t) through the solvability conditiofA5). We
obtain

©

f dx(hydya+hpa,b)

9s=*2v(8)+ (A9)

|” axa@+ b7

where the coefficients, andh, depend upon the amplitude
solutionsa and b and the non-potential parametér The
first term of the right-hand side of EgA9) represents the
rate of change of the domain size due to nonpotential effects,
which cause the kinks to move at a constant velogity).

The second term is related to kink interaction. In the case

As long as that the width of the interfaces is much smallerp=3 we can compute explicitly all the coefficients involved
than the domain siz€for all timest), we can make the in Eq.(A9) taking advantage of the analytical kink profiles at
following approximations: aby~0, aag~a, bby~by. lowest order ind [Eg. (3.3)]. Making an expansion in powers
Moreover, this assumption implies that the product of theof e Y25 retaining only the leading terms, and provided
derivative with respect ta of an amplitude solution centered that § is a small parameter, we obtain

on x= Xy multiplied by another amplitude shifted a length of
order of the domain size, will be a function that will take
values different from zero only in a small region around

(A10)
=Xq. By using the approximations

5 .,
hs== = 24\2e7 V25,

(a+bg)?d@a~a’da, which is Eq.(3.10.
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