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Fronts, domain growth, and dynamical scaling in ad51 nonpotential system

R. Gallego, M. San Miguel, and R. Toral
Instituto Mediterráneo de Estudios Avanzados,* Consejo Superior de Investigaciones Cientı´ficas, Universitat de les Illes Balears,

E-07071 Palma de Mallorca, Spain
~Received 17 November 1997; revised manuscript 6 April 1998!

By considering the inclusion of nonpotential terms in a model system that has the basic symmetries of a
n53 clock model, we study the issues of dynamical scaling, front motion, and domain growth in a one-
dimensional nonpotential situation. For such a system without a Lyapunov potential, the evolution follows a
nonrelaxational dynamics with the consequence that fronts between otherwise equivalent homogeneous states
move at a velocity dictated by the strengthd of the nonpotential terms and the asymptotic state can no longer
be associated with a final equilibrium state. In fact, for large enoughd, the system undergoes a transition
towards a situation of spatiotemporal chaos that is in many aspects equivalent to the Ku¨ppers-Lortz instability
for Rayleigh-Bénard convection in a rotating cell. We have focused on the transient dynamics below this
instability, where the evolution is still nonrelaxational and the dynamics is dominated by front motion. We
classify the families of fronts and calculate their shape and velocity. We deduce that the growth law for the
domain size is nearly logarithmic with time for short times and becomes linear after a crossover, whose width
is determined by the value ofd. This prediction is validated by numerical simulations that also indicate that a
scaling description in terms of the characteristic domain size is still valid as in the potential case.
@S1063-651X~98!04809-0#

PACS number~s!: 47.20.2k, 47.54.1r, 05.70.Ln
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I. INTRODUCTION

A noteworthy result in the study of nonequilibrium stati
tical mechanics is the existence of dynamical scaling dur
the coarsening process in which a system approaches
librium after undergoing a phase transition@1,2#. Dynamical
scaling reflects that domain growth is self-similar with
single time dependent characteristic length. In the simp
case of a relaxational dynamics for a scalar order param
which models, for example, an order-disorder transit
~modelA in the taxonomy of@3#!, domains of two equivalen
phases grow locally from an unstable state, and the appro
to a final equilibrium state is dominated by interface motio
For spatial dimensiond.1, the mechanism for domai
growth is curvature driven interface motion. This leads to
characteristic length growing asR;t1/2. This type of phe-
nomenon has been studied in a large variety of systems
share the common feature that the final state of the dynam
is a state of thermodynamic equilibrium, which minimizes
free energy or ‘‘potential’’ of the problem. Transient dynam
ics might also include additional processes beyond pure
laxation in that potential@4,5#, but a measure of relative sta
bility between stationary states is guaranteed by
existence of the potential. A more genuine nonequilibriu
dynamics occurs when such a potential does not exis
natural question, which we address in this paper, is the e
tence of dynamical scaling in the approach to a final stati
ary state that does not follow the minimization of a potent
while this transient dynamics from an unstable state invol
the formation of spatial domains. A numerical study of d
main coarsening in a nonpotential dynamics was reporte
Ref. @6#. The question of dynamical scaling can also be
dressed for Hamiltonian dynamics@7#, which is the extreme

*URL: http://www.imedea.uib.es/PhysDept
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opposite situation to that of dissipative relaxational dynam
in a potential. A general nonequilibrium situation will, i
general, have contributions from both types of dynam
@4,5#.

The motion of an interface between two linearly stab
solutions of a dynamical system was long ago proposed
measure of relative stability for a nonpotential system@8#,
and the motion of interfaces, domain walls, or front solutio
has been studied in a number of nonpotential systems@9–
12#. It is known that a domain wall between two equivale
states with different broken symmetry can move ind51 in
either direction due to nonpotential dynamics@9#. Likewise,
nonpotential dynamics can stabilize front solutions that,
the potential limit, would move from a globally stable into
metastable state@11#. It is the purpose of this paper to stud
the consequences of interface motion driven by nonpoten
dynamics on coarsening processes and dynamical sca
which by and large have not been considered.

To this end, and as a first step towards understanding
problem of domain growth and dynamical scaling in non
laxational systems, we consider the addition of specific n
potential terms to the one dimensional three-component v
tor model of statistical mechanics@13# ~a field model that has
the basic symmetries of theq53 Potts or then53 clock
models! describing three competing, nonconserved order
rameters with short-range self-interactions. It turns out t
the new nonpotential terms imply that the zero-dimensio
version of the resulting model is analogous to the Bus
Heikes model for Rayleigh-Be´nard convection in a rotating
cell and also mathematically equivalent to the May-Leon
biological model of competition between three species.
though the model studied here is not a realistic model
Rayleigh-Bénard convection in a rotating cell@14#, one can
still use the analogy to get an intuitive physical interpretat
of the dynamical evolution of the system. It is known th
for the fluid system, and beyond a threshold value for
3125 © 1998 The American Physical Society
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3126 PRE 58R. GALLEGO, M. SAN MIGUEL, AND R. TORAL
parameter,d, measuring the strength of the nonpotent
terms~related to the rotation speed of the cell! an instability
to a time dependent dynamics occurs~Küppers-Lortz insta-
bility @15,16#!. Below this instability, but still taking the sys
tem beyond the Rayleigh-Be´nard convective instability, lo-
cally ordered domains, associated with different orientati
of the convective rolls, emerge. The subsequent coarse
process seems to be stopped by the Ku¨ppers-Lortz instability
in d52 @17,18#. However, below the instability to a tim
dependent state, three preferred orientations exist and
motion of interfaces separating them is subject to nonpo
tial dynamics that will affect domain growth.

Another reason for using this system is that dynami
scaling ind51 potential systems is a special case for wh
well established results are available@2,19#: for the simplest
case of a scalar nonconserved order parameter with s
range interactions, a scaling solution is known with a log
rithmic growth law for the typical domain size,R; ln t
@20,21#. This regime follows an early time regime of doma
formation with a growth lawR;t1/2 @22#. The logarithmic
domain growth has its origin in the interactions between
main walls@23#. The velocity of domain wall motion in thes
circumstances can be calculated by a perturbation ana
@10#. We study how these results are modified by nonpot
tial dynamics. We find that dynamical scaling still holds, b
with a crossover between two well defined regimes cha
terized by a logarithmic and linear domain growth law, r
spectively. The two growth laws can be traced back to
two mechanisms that determine domain wall motion. T
first one is the interaction between domain walls as in
potential case. The second one is due to the fact that
nonpotential dynamics causes isolated individual fronts
move with finite velocity. In a multifront configuration thi
provides an additional coarsening mechanism in which fro
moving in opposite directions annihilate each other. T
crossover time between the two dominant mechanisms
scribed depends on the strength of nonpotential terms. W
these become large enough, the logarithmic regime is pus
to just the very early times. In this case finite size effe
become also important since very large domains eme
rather fast.

The outline of the paper is as follows: in Sec. II we intr
duce the nonpotential model and describe its homogene
stationary solutions. In Sec. III we classify no
homogeneous front solutions and compute their velocity.
also analyze the interactions between two fronts includ
the nonpotential effects. In Sec. IV we discuss the issue
dynamical scaling and the growth law. We present numer
simulations that show the validity of the dynamical scali
description when nonpotential terms are present. Finally
Sec. V we end with some conclusions and an outlook.

II. THEORETICAL MODEL

We base our theoretical approach on the following mod

] tAi52
dF
dAi

2d f i , i 51,2,3. ~2.1!

HereA1 , A2 , andA3 are real scalar fields. For the potenti
function F we choose that of the well-knownn53 vector
model @13#:
l
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F@A1 ,A2 ,A3#5E dxH 1

2 (
i 51

3

~]xAi !
21

h

2
F22

1

2
F

2
h21

4
CJ , ~2.2!

whereF5( i 51
3 Ai

2 andC5( i 51
3 Ai

4 . The nonpotential terms
are chosen as

f 15A1~A2
22A3

2!,

f 25A2~A3
22A1

2!, ~2.3!

f 35A3~A1
22A2

2!.

In the cased50 the dynamical flow is of arelaxational
gradient type @4,5#, that is, there exists a Lyapunov func
tional (F) that monotonically decreases in time. Whend
Þ0, however, one cannot find generally such a functio
and we say that the system isnonpotential.

The resulting equations of motion are

] tA15]x
2A11A1@12A1

22~h1d!A2
22~h2d!A3

2#,

] tA25]x
2A21A2@12A2

22~h1d!A3
22~h2d!A1

2#,
~2.4!

] tA35]x
2A31A3@12A3

22~h1d!A1
22~h2d!A2

2#,

and they form the basis of our subsequent analysis. No
that the system is invariant under the following transform
tions:

~a! x→x1x0 , t→t1t0 ~spatio-temporal translation sym
metry!,

~b! A1→A2 ,A2→A3 , A3→A1 ~cyclic permutation sym-
metry!,

~c! Ai�Aj , d→2d, whereAi , Aj are any two differ-
ent amplitudes.

The previous analysis shows thatA1 , A2 , and A3 are
‘‘equivalent’’ variables~from the dynamical point of view!.

A similar set of equations is introduced in Ref.@24# for
some particular values of the parametersh, d in the context
of population dynamics. In their caseAi

2 represents the popu
lation of a biological species.

If one neglects the spatial dependence of the fieldsAi we
recover a model first proposed in the context of fluid dyna
ics by Busse and Heikes@16#, which is mathematically
equivalent to a model of three competing biological spec
@25#. In the Busse-Heikes model,A1 , A2 , and A3 are the
amplitudes of the three selected modes corresponding
three different orientations of the convection rolls in the r
tating cell. For this fluid case,d is related to the rotation
speed such thatd50 is the nonrotating case; the parameterh
is related to other fluid properties. The analysis of@16# and
@25# shows that, for a certain range of the parametersh and
d ~see next section!, there are no homogeneous stable so
tions and the dynamics tends asymptotically to a sequenc
alternations of the three modes. An unwanted feature of
previous model is that the alternation time is not consta
but increases with time, contrary to experiments where
approximately constant period is observed. Busse and He
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proposed that the addition of small noise could stabilize
period @5,26#, but an alternative explanation considered t
addition of space-dependent terms to the equations.
though the symmetries that must satisfy the amplitude eq
tions would imply that the spatially dependent terms sho
be of a specific form@27–29#, it has been shown in@17# that
these can be further simplified without altering the essent
of the problem. Our one dimensional model with equivale
space-dependent terms for the three variables does not s
the proper symmetries holding in the fluid case. Howeve
is still true that we can use the fluid analogy to gain so
insight into the dynamical behavior of the model. For th
reason we will refer often to theAi ’s as the ‘‘amplitude’’
fields.

There exist two kinds of homogeneous solutions that
stable in some region of the parameter space spannedh
and d. These are three ‘‘roll’’ solutionsAi51, Aj50 ( j
Þ i ), i 51,2,3, and one ‘‘hexagon’’ solutionA15A25A3

51/A112h ~this solution requiresh.21/2). A linear sta-
bility diagram of these solutions is shown in Fig. 1. We ha
focused on the region labeled with the letterR for values of
d below the Küppers-Lortz instability (udu,h21) and
where the rolls are the stable solutions. In this region
expect the formation of domain walls connecting homo
neous stable roll solutions.

III. FRONT SOLUTIONS

A. Isolated fronts

In the context of the present study, fronts or domain wa
are defects that connect two stable homogeneous solut
Fronts in one dimension are usually termedkinksand we will
often refer to them in this way. We focus on the spa
dependent stationary solutions of Eq.~2.4! with d50. The
stable kink solutions are such that one of the three am
tudes, sayAk , satisfying the boundary conditionsAk(x→
6`)50, is zero everywhere. In order to study the dynam
of the nonpotential kinks, we first consider the kinks asso
ated with the stationary potential problem and then we tr

FIG. 1. Linear stability diagram of the homogeneous solutio
of Eq. ~2.4!. Inside the region labeledR, rolls are stable whereas i
the H region, the stable solution is the hexagon. The KL reg
corresponds to the Ku¨ppers-Lortz instability.
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the nonpotential terms as a perturbation. The two nonvan
ing stationary amplitudesAi andAj are, ford50, solutions
of

]x
2Ai52Ai1Ai

31hAiAj
2 ,

~3.1!
]x

2Aj52Aj1Aj
31hAjAi

2 ,

with boundary conditionsAi(2`)5Aj (1`)50 and Ai
(1`)5Aj (2`)51.

The system~3.1! may be considered to represent the tw
dimensional motion of a Newtonian particle of unit ma
(x→t, Ai→X, Aj→Y) under the action of a force with
potential function V(X,Y)5 1

2 (X21Y2)2 1
4 (X41Y4)

2 1
2 hX2Y2. This function has two maxima inm05$Ai

51,Aj50% andm15$Ai51,Aj51%. It is clear that there ex-
ists a unique trajectory~allowed by the dynamics! along
which a particle located inm0(m1) can reachm1(m0). The
kink profile corresponds to the variation in time of the pa
ticle coordinates„X(t),Y(t)… when it moves between the tw
maxima@30#.

An explicit analytical solution can be found in two pa
ticular cases@31#. First, when 0,h21!1, we have

Ai
0~x!5r ~x!@11exp~2Ah21~x2x0!!#21/2,

~3.2!
Aj

0~x!5r ~x! ex@11exp~2Ah21~x2x0!!#21/2,

with r (x)511(h21)R(x), R(x)5O(1). Secondly, when
h53 it is possible to obtain exact analytical solutions:

Ai
0~x!5

1

11e7A2~x2x0!
5

1

2F16tanhS x2x0

A2
D G ,

~3.3!

Aj
0~x!5

1

11e6A2~x2x0!
5

1

2F17tanhS x2x0

A2
D G .

In both casesx0 is arbitrary but fixed. From these solutions
is clear that the spatial scale over whichAi

0 andAj
0 vary is of

order 1/Ah21.
The three roll solutions are equivalent and they yield

same value for the Lyapunov functional~2.2!. Therefore, we
expect isolated kinks not to move in the potential proble
(d50). We now ask about the persistence of these k
solutions whend is different from zero. For this we will use
singular perturbation theory. Let us assumed to be small,
say of order«, and look for a solution of Eq.~2.4! @with
Ak(x)50# of the form

Ai~x!5Ai
0
„x2s~ t !…1« Ai

1
„x2s~ t !…1O~«2!,

~3.4!
Aj~x!5Aj

0
„x2s~ t !…1« Aj

1
„x2s~ t !…1O~«2!,

whereAi
0(x) andAj

0(x) are solutions of Eq.~3.1!. Substitut-
ing into Eq.~2.4! and matching the terms of the same ord
in «, we find, at orderO(«0),

]x
2Ai

01Ai
02~Ai

0!32hAi
0~Aj

0!250, ~3.5!

]x
2Aj

01Aj
02~Aj

0!32hAj
0~Ai

0!250,

and at orderO(«1)

s
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La5a8, ~3.6!

where

L

5S ]x
2112h@~Ai

0!21~Aj
0!2# 22hAi

0Aj
0

22hAi
0Aj

0 ]x
2112h@~Ai

0!21~Aj
0!2#

D ,

a5S Ai
1

Aj
1D , a85S d«21~Ai

0!2Aj
02Ai

0] ts

2d«21Aj
0~Ai

0!22Aj
0] ts

D .

The solvability condition for the existence of a solutio
@Ai

1(x), Aj
1(x)# reads

~F†, a8!50, ~3.7!

where (•,•) is a scalar product inL2(R) defined by (f ,g)
5*2`

` dx f(x)* g(x) andF† belongs to the null space of th
autoadjoint operatorL. Because of the translational invar
ance,L has a zero eigenvalue so that its kernel is not em
The associated eigenvector is

F†5S ]xAi
0

]xAj
0 D . ~3.8!

This is immediately seen taking, for example, the derivat
of Eq. ~3.5! with respect tox. Equation~3.7! can now be
explicitly evaluated. From this equation, the solitarykink ve-
locity in the nonpotential case is obtained at leading orde

v~d![] ts5d

E
2`

`

dx Ai
0Aj

0~Aj
0]xAi

02Ai
0]xAj

0!

E
2`

`

dx@~]xAi
0!21~]xAj

0!2#

1O~d2!.

~3.9!

Therefore, in the nonpotential case, the kink moves
spite connecting states associated with the same value o
Lyapunov potential of the equilibrium problem, as alrea
known for other problems@9#. For the particular case ofh
53 for which an analytical result is available for the kin
profile @Eq. ~3.3!#, an explicit result is obtained for the sol
tary kink velocity, namely,v(d)5dA2/4.

The expression~3.9! gives not only the magnitude of th
velocity but also the direction of motion, which is related
the sign ofv. First, we note that the velocity is at leadin
order proportional tod, so the direction of the motion de
pends upon the sign ofd. To illustrate how Eq.~3.9! deter-
mines the direction, let us consider, for example, a kink w
boundary conditions:Ai(2`)5Aj (1`)50 and Ai(1`)
5Aj (2`)51; Ai

0(x) andAj
0(x) are such that]xAi

0.0 and
]xAj

0,0. In this case the numerator of Eq.~3.9! is positive
and v has the sign ofd. A positive ~negative! value of v
corresponds to a kink moving to the right~left!. In Fig. 2 we
show a classification of the six possible types of isola
kinks and their direction of motion. Three of them move
one direction and the other three in the opposite directio

We have checked numerically the domain of validity
the perturbative result~3.9! ~see Fig. 3!. To check Eq.~3.9!
we either use the analytical result of the kink profileAi

0 for
y.

e

-
the

h

d

h53, or, more generally, the kink profileAi
0 obtained nu-

merically. For a value ofh53.5, we see that the perturbativ
result to first order ind, Eq. ~3.9!, turns out to be in good
agreement with the numerical results approximately for v
ues ofd&1.5. Of course this upper limit of validity depend
on h in such way that it gets bigger ash is larger. Above this
limit the linear relation betweenv andd is no longer valid
and one needs to compute further corrections in terms
successive powers ofd.

B. Multifront configurations

To study transient dynamics and domain growth we c
sider random initial conditions of small amplitude around t
unstable solutionA15A25A350. In this situation a multi-
front pattern emerges rather than a solitary kink. In order
study dynamical scaling, we are interested in the late stag
this dynamics, once well-defined domains have been form

In a potential system governed by a nonconserved sc
order parameter with short-range interactions, as is the c
with d50, late time dynamics can be explained in terms
the interaction~and further annihilation! among adjacent
kinks @24,20,21,23#. An isolated kink is stable. The interac
ing force between kinks turns out to be proportional
exp(2ad) @23#, wherea is somepositiveconstant related to
the interface width and other system parameters, andd is the

FIG. 2. Kinds of fronts and their direction of motion ford.0.
The remaining amplitude for each kink is understood to be z
across the interface. Ford,0 the picture is the same but with th
arrows interchanged.

FIG. 3. Solitary kink velocity as a function of the nonpotenti
parameterd for h53.5. The straight line corresponds to the the
retical perturbative approach~3.9! whereas the points come from
numerical simulation. Here and in the remaining figures, mag
tudes are in the dimensionless units of Eq.~2.4!.
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FIG. 4. Snapshots of the temporal evolutio
of the system. Parameter values:h53.5, d
50.5, L5500.
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distance between two adjacent kinks. This interaction am
kinks leads to a growth law for the characteristic length t
depends on time logarithmically@20,21#. The force is attrac-
tive and leads to kink annihilation. The process occurs
such a way that the domain that vanishes first is the sma
one. Kink annihilation occurs in a very small time scale.
fact, the hypothesis of ‘‘instantaneous annihilation’’ h
been found to be a good assumption@20#. Kink annihilation
induces domain coarsening, leading to a final state wit
homogeneous roll solution filling up the whole system.

When d is different from zero the long stage dynami
should still be explained in terms of moving fronts that a
nihilate each other. But now two very distinct competi
physical phenomena come into play. On the one hand, t
is the aforementioned kink interaction. On the other hand,
have the kink motion driven by nonpotential effects. In th
case, we do not expect the growth law to be logarithmic
least in the regime where the nonpotential effects~the
strength of which is measured byd) are important. In Fig. 4
we show some snapshots corresponding to a typical ru
the temporal evolution of the system~we use periodic bound
ary conditions!. The first snapshot corresponds to an ea
stage during which domains are forming. Once form
kinks move in such a way that annihilations of contrapro
gating adjacent kinks leads to coarsening. Eventually, as
responding to the last snapshot, the system may be in a
with a group of kinks moving all in the same directio
These will interact among them~with an interaction force
that varies logarithmically with the interkink distance! until
extinction.

We have performed a perturbation analysis of dom
growth in the simplest example of a single domain bound
by two moving domain walls. A differential equation for th
domain sizes(t) can be obtained in the general case~see
Appendix!. For h53 it adopts the simple form

] ts~ t !52v~d!224A2e2A2s~ t !, ~3.10!
g
t

n
st

a

-

re
e

t

of

y
,
-
r-

ate

n
d

wherev(d) is the solitary kink velocity. This expression i
obtained in the ‘‘dilute-defect gas approximation,’’ that i
when the width of the fronts is much smaller than the d
tance between them. The first term in the right-hand of
~3.10! can be either negative or positive and represents
contribution to the variation of the domain size owing
nonpotential effects. The second term is related to the in
acting force between the kinks and it is always negative~at-
tractive force! so that it tends to shrink the domain. If bot
terms are negative, the kinks will annihilate each other. O
erwise, when the first term is positive, the two effects act
opposite directions. In fact, given an initial size of the d
main s0 , it is possible to find a valued5dc for which the
domain neither shrinks nor grows; in this case, the init
domain would not evolve in time, being a stationary solutio
For valuesd.dc the domain would get wider whereas fo
d,dc it would shrink. Note that in thed50 case~potential
regime!, the isolated domain always collapses, but this c
be stopped with a suitable strength of the nonpotential ter
Furthermore, given a fixed value ofd, if s0 is large enough,
the dominant term responsible for the kink motion is the o
associated withv(d). In this case the fronts move at a co
stant velocity leading to a variation of the domain size line
with time. On the other hand, ifs0 is small enough, kink
interaction will be the dominant effect and the single dom
size will collapse logarithmically with time. This picture o
the size dynamics of a single domain also explains basic
what happens when more domains~and a nonvanishing third
amplitude! coexist. It gives a useful understanding of th
characteristic growth laws obtained from a statistical analy
in the next section.

IV. DOMAIN GROWTH AND SCALING

In this section we focus on the scaling properties of
system~2.4! in a late stage of the dynamics, namely, wh
well-defined domains have formed. The scaling hypothe
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states that there exists a single characteristic length s
R(t) such that the domain structure is, in a statistical sen
independent of time when lengths are scaled byR(t). We
will refer to the time dependence of the scale length as
growth lawof the system. It has been found that the scal
hypothesis holds in a great variety of potential systems.
system under study here gives us the opportunity of answ
ing the question of whether a nonpotential dynamics satis
dynamical scaling.

Two magnitudes frequently used to study domain grow
and scaling properties for a scalar fieldC(x,t) @for instance,
one of the three amplitudes in Eq.~2.4!# are the equal time
correlation function

C~r ,t !5K (
x

C~x1r ,t !C~x,t !L
i.c.

, ~4.1!

and its Fourier transform, the equal time structure factor

S~k,t !5K (
k

Ĉ~k,t !Ĉ~2k,t !L
i.c.

, ~4.2!

where the angular brackets indicate an average over in
conditions~‘‘runs’’ !. If a single characteristic length exist
according to the scaling hypothesis, the pair correlation fu
tion and the structure factor must have the following scal
forms in ad-dimensional system:

C~r ,t !5 f „r /R~ t !…, ~4.3!

S~k,t !5R~ t !df̂ „kR~ t !…. ~4.4!

The function f is called thescaling function. To check nu-
merically the validity of the previous scaling laws, we ha
integrated the system of equations~2.4! using a finite differ-
ence method for both the spatial and temporal derivatives
the simulations we have taken a constant value forh,
namely,h53.5, and we have variedd from d50 ~potential
case! to d50.1 ~a value below the Ku¨ppers-Lortz instability
threshold!. We have used periodic boundary conditions a
have averaged our results over 100–500 runs. To study
main structure, we consider the correlation function of one
the three amplitudes. We use the correlation function be
than the structure factor because of the large fluctuation
the structure factor at small wave numbers. A typical len
scale associated with the average domain size can be de
in several ways. Specifically, we have determined it by co
puting the value ofr for which C(r ,t) is half its value at the
origin at timet, that isC„R(t),t…5 1

2 C(0,t). The calculation
has been performed by fitting the four points ofC(r ,t) clos-
est toC(0,t) to a cubic polynomial. Another typical length
R1(t) can be evaluated directly as the system size divided
the number of kinks. We have verified that the quotie
R1(t)/R(t) remains nearly constant, as expected, whe
single characteristic length dominates the problem.

A. Growth law

We consider first the potential cased50: in Fig. 5 we
show that the domain size follows the expected logarithm
behavior. The attractive interaction among the kinks lead
le
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a very long transient before the system reaches its final s
which corresponds to a one roll solution filling up the who
system.

In the nonpotential case, the averaged domain sizeR(t) is
shown in Fig. 6 for a system of size 500 andd51023. For
the earliest times, when the kinks are very close to e
other, and according to the discussion in Sec. III B, we
pect the interaction terms to be the dominant ones~as long as
d is small enough!. This leads to a logarithmic growth o
R(t) as observed in region I of Fig. 6. Due to coarsening
characteristic domain size becomes larger and the dom
wall interaction becomes weaker as the time increases.
longer times the nonpotential effects dominate with resp
to wall interaction. In this regime we can consider each d
main wall to move at a constant velocity. We obtain for th
stage a growth consistent with a linear profile with time~re-
gion III!. Between regions I and III there exists a crossov
~region II! for which the weights of both effects~interaction
and nonpotential! in driving the domain wall motion are o
the same order. Finally, at very late times finite size effe
come into play~region IV!: the domain size saturates to
constant value and the number of domain walls is too sm
to generate good statistics. Whend is large enough the initia
kink annihilation is so fast that the regions I and II in th
R(t) plot can hardly be observed in the numerical integ
tion. In this case of large nonpotential effects, a linear grow
law is observed from the shortest times as shown in Fig
for a very large system of sizeL5100 000. For smaller sys
tems finite size effects occur at relatively early times. F
example, saturation effects appear fort*200 for a system of

FIG. 5. Time evolution of the characteristic domain size for t
potential cased50 andL51000. The straight line is a linear re
gression fit of points obtained numerically.

FIG. 6. ~a! Time evolution of the characteristic domain size f
d50.001 andL51000. The initial logarithmic growth law~region
I! becomes linear~region III! after a crossover~region II!. Region
IV is related to finite size effects.~b! Closeup of region I in the left
plot with logarithmic time scale.
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sizeL5500. The biggerd, the sooner finite size effects ap
pear.

In the regime for which the interaction effects are t
dominant ones, we can give a simple explanation of the
ear growth law observed based on mean field theory a
ments. Statistically speaking, there will be the same num
of kinks moving to the right and to the left. As a matter
fact, in an appropriate reference frame, the system can
seen as composed of motionless kinks~type 1! and kinks
moving at a velocity of 2v in one fixed direction~type 2! . If
we callN1(t) andN2(t) theaveragenumber of kinks of both
types at timet, the number of kinks of, say type 1, at tim
t1dt will be

N1~ t1dt!5N1~ t !2N1~ t !2v dt
N2~ t !

L
, ~4.5!

where the second term in the right-hand side represents
number of kinks disappeared indt by annihilation andL
stands for the system size. The important point is t
N1(t)5N2(t)5N(t) ~remember we are dealing with ave
aged quantities!, so that Eq.~4.5! transforms intoṄ(t)5
2(2v/L)N(t)2. The integration of the previous equatio
gives N(t)5@(2v/L)t1N0

21#21;t21, so that the average
inter-kink distanceR(t);N(t)21;t is linear with time.

We note that this mean field argument and the lin
growth law does not hold for a discrete model with doma
walls performing independent random walks; in this cas
power law R(t);t1/2 can be rigorously demonstrate
@24,32#. This fact is not surprising because it is known th
growth laws for discrete and stochastic models may di
from those of the corresponding continuous and determi
tic versions@33#. One representative example is the Isi
model with Glauber dynamics versus thef4 model. In the
former, the characteristic domain size grows asR(t);t1/2

@34# independently of the dimensionality, whereas in the lat-
ter the growth law isR(t); lnt for d51 @20,21# and R(t)

FIG. 7. Time evolution of the characteristic domain size for tw
distributions of the initial conditions with different width of th
random variableDN5NR2NL , which measures the difference b
tween right and left moving interfaces. The inner plot shows
corresponding histograms in terms of the relative frequency ofDN.
The initial conditions were generated as explained in Sec. IV
The growth exponents obtained numerically are close to 1.0 and
for the solid and dashed lines, respectively. Parameter values
h53.5 andd50.1; the system size isL5100 000.
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;t1/2 for d.1 @1,2#. An explanation for the failure of the
mean field argument when applied to the discrete mode
that the initial fluctuationDN in the number of kinks moving
in each direction is important. It seems that such fluctuati
are not significant enough in the continuous model in wh
domain walls emerge from a slight perturbation of the u
stable stateA15A25A350. To check this idea we hav
computed the growth lawR(t) for the continuous system
with modified initial conditions. We have generated initi
conditions with a wider distribution of the random variab
DN as follows: for each pointxj of the discretized mesh, a
random numbernj from the set$1,2,3% is chosen. Then the
amplitude values atxj are Ak(xj )5dknj

, k51,2,3 (d i j

stands for the Kronecker function!. This generation of initial
domain walls mimics the situation of a discrete model. T
histogram ofDN for the situations considered is shown
Fig. 7. For the artificially generated initial distribution o
kinks we obtain a growth rate that is no longer linear
shown in Fig. 7.

We finally note that at long times the system will cons
of a homogeneous roll state or a group of kinks movi
either to the right or to the left@35#. Note that the periodic
boundary conditions impose constraints on the number
such moving kinks. To be precise, the number of kinks m
ing in a fixed direction must be a multiple of three. We c
form a subgroup of three kinks moving in the same direct
by joining those appearing in each row of Fig. 2. The movi
kinks will continue interacting among them until eventua
they will all disappear. In this situation we expect the grow
law to be logarithmic with time but one of such groups
composed typically of three, six, or rarely nine kinks, a nu
ber too small to generate good statistics.

B. Scaling function

We now address the question of the validity of the d
namical scaling hypothesis~4.3!. For this purpose, we hav
plotted the equal time correlation functionC(r ,t) versus the
scaled lengthr /R(t) for several times. Figure 8 shows th
scaling function in the potential case. In Figs. 9 and 10
show the correlation functions for several times before a
after scaling the system length. Our results show that
correlation functions follow a single profile when the leng
is scaled with the characteristic domain sizes obtained ab
We therefore conclude that a scaling description of the s
tem is also valid as in the potential case, but now with
nonpotential dynamics. The upper limit of the time interv
during which there is scaling is determined by the appe
ance of finite size effects. The range of values ofd for which
there is scaling in a quite large time interval is rather sm
For values ofd of even a few tenths, the finite size effec
show up for very short times. Moreover the fluctuations
the scaling function grow asd increases. For these reason
we have not been able to obtain a conclusive compari
between scaling functions for different values ofd, although
their shapes appear to be rather insensitive to the value od.

V. CONCLUSIONS

We have studied domain growth and dynamical scaling
a nonpotential coarsening process in one dimension.
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model considered features three coupled amplitudes. It is
lated to models of competing population species and t
three-mode description of the phenomenon of Raylei
Bénard convection in a rotating cell, although it cannot
used as a realistic model for this physical process. We h
focused on the region below the Ku¨ppers-Lortz instability
point, where the dynamics is still nonpotential and the s
tem shows coarsening. A solitary kink moves at a cons
velocity due to the nonpotential dynamics. When there
several kinks present in the system, these move due to
domain wall interaction and nonpotential effects. In any c
the dynamics is governed by the motion of interfaces. T
motion is such that kinks moving in opposite directions a
nihilate each other. As a consequence of kink annihilat
the average domain size grows in time and the system co
ens. Whend50 ~potential case! we have shown that, in
accordance with general results, the growth law is logar
mic with time and that a scaling description of the syst
dynamics is possible. Whend becomes different from zero
we have found that the scaling hypothesis still holds, as
the potential case, but with a different growth law that
flects the nonpotential dynamics of the system. For the sh
est times, the kink interaction~the only effect present in the
potential case! is the dominant effect and gives rise to
logarithmic growth law with time. For longer times the a
erage interkink distance is large enough to make the inte
tion effects negligible in driving kink motion. Therefore eac
kink moves~at a constant velocity! nearly independently o
the others as if it were isolated. This situation leads to

FIG. 8. Scaling function for the potential cased50. The plot
has been made by over plottingC(r ,t i) vs r /R(t i) for several
times fromt5200 up tot55000.

FIG. 9. ~a! Equal time correlation function vs the nonscal
length for d50.001, L51000, and several different times fromt
5150 to t515 000. ~b! Equal time correlation function vs th
scaled length. The system parameters and the times for each
are the same as in~a!.
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growth law consistent with a linear profile with time. Fo
larger values ofd the logarithmic region is not observe
because of the fast annihilation of the domains during
very early times. The two dimensional version of this pro
lem is currently under study@36# and it exhibits rather dif-
ferent dynamical behavior grossly dominated by vertic
where three domain walls meet and which have no paralle
one dimensional systems.
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APPENDIX

We consider an isolated domain bounded by two dom
walls associated with amplitudesA1 and A2 , while A350.
When the domain size is much greater than the interf
width ~‘‘dilute-defect gas approximation’’!, a reasonablean-
satzfor this solution is

A1~x,t !5a@x2r ~ t !#1b~x2d1r ~ t !!1w1~x,t !,
~A1!

A2~x,t !5b@x2r ~ t !#1a~x2d1r ~ t !!211w2~x,t !,

wherer (t) measures the displacement of the kinks,d is the
initial domain size@so that the domain size at timet is d
22r (t)], ] tr andwi ( i 51,2) are assumed to be small co
rections of orderd and] twi to be negligible with respect to
wi . To simplify notation, we usef [ f @x2r (t)#, f d[ f @x
2d1r (t)#. The moving frontsa andb satisfy the boundary
conditionsa(`)5b(2`)50, a(2`)5b(`)51, and they
are solutions of the system~2.4! ~with one of the amplitudes
equal to zero! so that the following equations hold:

M1~a,b!5M1~bd ,ad!5M2~b,a!5M2~ad ,bd!50,
~A2!

where the action of the operatorsM6(•,•) is given by

M6~ f ,g!5]x
26v~d!]x1 f 2 f 32~h6d! f g2. ~A3!

The parameterv(d) is the front velocity as given by Eq
~3.9!.

Introducing the ansatz~A1! into Eq. ~2.4! we obtain, at
leading order, a linear system of equations forw1 andw2:

rve

FIG. 10. ~a! Equal time correlation function vs the nonscale
length for d50.1, L51000, and several different times fromt
515 to t5150. ~b! Equal time correlation function vs the scale
length. The system parameters and the times for each curve ar
same as in~a!.
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Lf5f8, ~A4!

L5S ]x
21123~a1bd!22h~b1ad21!2 22h~a1bd!~ad1b21!

22h~a1bd!~ad1b21! ]x
21123~ad1b21!22h~a1bd!2D ,

f5S w1

w2
D , f85S ~]xa1]xbd!v~d!1~]xbd2]xa!] tr 1K1d1K2h1K3

~]xb1]xad!v~d!1~]xad2]xb!] tr 1K18d1K28h1K38
D ,
n
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where the functionsKi(x,t) and Ki8(x,t) ( i 51,2,3) are
given by

K15a~ad21!212b~a1bd!~ad21!1bd~122ad1b2!,

K25a~ad21!212~ad21!~ab1adbd1bbd!1bd~11b2!,

K3522]x
2bd1bd~3a213abd12bd

222!,

K1852a~a12bd!~ad21!1bd~bd22ab2bbd!,

K285a~a12bd!~ad21!1bd~2ab1bbd12adbd2bd!,

K38522]x
2ad13b2~ad21!13b~ad21!212ad

323ad
21ad .

The solvability condition for the existence of a solutio
„w1(x,t),w2(x,t)… for Eq. ~A4! reads

~C†, f8!50, ~A5!

where C† belongs to the kernel of the auto-adjoint line
differential operatorL. We will show below thatC† is ap-
proximately given by (]xa, ]xb)T ~hereT denotes the trans
posed vector!, wherea5a@x2r (t)# andb5b@x2r (t)# are
the domain wall profiles aroundx5r (t).

The first component of the vectorLC† is given by

~LC†!15L11]xa1L12]xb5]x
3a1]xa23~a1bd!2]xa

2h~ad1b21!2]xa22h~a1bd!~ad1b21!]xb.

~A6!

As long as that the width of the interfaces is much sma
than the domain size~for all times t), we can make the
following approximations: abd'0, aad'a, bbd'bd .
Moreover, this assumption implies that the product of
derivative with respect tox of an amplitude solution centere
on x5x0 multiplied by another amplitude shifted a length
order of the domain size, will be a function that will tak
values different from zero only in a small region aroundx
5x0 . By using the approximations

~a1bd!2]xa'a2]xa,
.

r

e

~ad1b21!2]xa'b2]xa, ~A7!

~a1bb!~ad1b21!]xb'ab]xb,

we find

~LC†!15]x@]x
2a1a2a32hb2a#. ~A8!

Taking the derivative of Eq.~2.4! with respect tox we find
that the right-hand side of~A.8! is equal to zero when the
amplitude solutionsa5a@x2r (t)# and b5b@x2r (t)# are
replaced by its form ford50. Hence, we conclude tha
(LC†)15O(d). Likewise, we can prove that (LC†)2
5O(d). Therefore, at lowest order ind, (]xa, ]xb)T be-
longs to the kernel of the operatorL.

Now we can calculate the evolution of the domain s
s(t)5d22r (t) through the solvability condition~A5!. We
obtain

] ts>62v~d!1

E
2`

`

dx~ha]xa1hb]xb!

E
2`

`

dx@~]xa!21~]xb!2#

~A9!

where the coefficientsha andhb depend upon the amplitud
solutionsa and b and the non-potential parameterd. The
first term of the right-hand side of Eq.~A9! represents the
rate of change of the domain size due to nonpotential effe
which cause the kinks to move at a constant velocityv(d).
The second term is related to kink interaction. In the ca
h53 we can compute explicitly all the coefficients involve
in Eq. ~A9! taking advantage of the analytical kink profiles
lowest order ind @Eq. ~3.3!#. Making an expansion in power
of e2A2s(t), retaining only the leading terms, and provide
that d is a small parameter, we obtain

] ts56
d

A2
224A2e2A2s~ t !, ~A10!

which is Eq.~3.10!.
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